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Preliminaries

Do you have feedback or any questions? Write to bastian.rieck@helmholtz-muenchen.de or
reach out to @Pseudomanifold on Twitter. You can find the slides and additional information
with links to more literature here:

https://heidelberg.topology.rocks
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Recap

� There is a multi-scale generalisation of Betti numbers, called persistent homology.
� It is versatile and can be applied to point clouds or structured data.
� The resulting descriptors are called persistence diagrams.
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In this lecture
The landscape of topological descriptors

What choices of topological descriptors do we have? What are their properties, advantages, and
disadvantages, respectively?
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Persistence diagrams

Creation

D
es

tr
uc

tio
n � Points are tuples inR×R ∪ {∞}.

� Persistence corresponds to distance to diagonal.
� Multiplicity of each point is not apparent!
� Space under diagonal is typically unused.
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Distances between persistence diagrams

Bottleneck distance
Given two persistence diagramsD andD′, their bottleneck distance is defined as

W∞(D,D′) := inf
η : D→D′

sup
x∈D

‖x− η(x)‖∞,

where η : D → D′ denotes a bijection between the point sets ofD andD′ and ‖ · ‖∞ refers to
the L∞ distance between two points inR2.

Wasserstein distance

Wp(D1,D2) :=

 inf
η : D1→D2

∑
x∈D1

‖x− η(x)‖p∞

 1
p
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Differences between the two distances
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Calculation in practice

� Need to solve optimal transport problem.1

� Fast algorithms exist,2 as well as approximations.3

Key insight
For many problems, having a weaker measure of similarity is actually sufficient! Various other
representations of persistence diagrams offer such similarity measures, providing better scalab-
ility at the expense of precision.

1G. Peyré, M. Cuturi et al., ‘Computational Optimal Transport’, Foundations and Trends® in Machine Learning 11.5–6,
2019, pp. 355–607

2M. Cuturi, ‘Sinkhorn Distances: Lightspeed Computation of Optimal Transport’, Advances in Neural Information
Processing Systems, ed. by C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani and K. Q. Weinberger, vol. 26, Curran
Associates, Inc., 2013

3M. Kerber, D. Morozov and A. Nigmetov, ‘Geometry helps to compare persistence diagrams’, Proceedings of the
18th Workshop on Algorithm Engineering and Experiments (ALENEX), ed. by M. Goodrich and M. Mitzenmacher,
Philadelphia, PA, USA: Society for Industrial and Applied Mathematics, 2016, pp. 103–112
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Properties of persistence diagrams
Stability (intuition)
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Properties of persistence diagrams
Stability to small-scale perturbations

LetM be a triangulable space with continuous tame functions f, g : M → R. Then the corres-
ponding persistence diagrams satisfy W∞(Df ,Dg) ≤ ‖f − g‖∞.
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Properties of persistence diagrams
Stability in practice

Need to be careful when working with subsamples M̃ of a point cloud M. Here, we have 100
points (normally-distributed inR2) and 50 subsamples of varying sizem.

0 10 20 30 40 50 60 70 80 90 100

0

2

4

Mini-batch sizem

di
st

H

( M
,M̃

)

The stability theorem is due to Cohen-Steiner et al.4 and laid the foundation for practical uses of
persistent homology.

4D. Cohen-Steiner, H. Edelsbrunner and J. Harer, ‘Stability of persistence diagrams’, Discrete & Computational
Geometry 37.1, 2007, pp. 103–120
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Interlude
Kernel theory

Kernel
Given a set X , a function k : X × X → R is a kernel if there is a Hilbert space H (an inner
product space that is also a complete metric space) and a mapΦ: X → H, such thatk(x, y) =
〈Φ(x),Φ(y)〉H for allx, y ∈ X .

What is this good for?
Such a kernel can be used to assess the dissimilarity between two objects! The feature space H
can be high-dimensional, thus simplifying classification.
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A Stable Multi-Scale Kernel for Topological Machine Learning

This is the first kernel between persistence diagrams;5 it is simple to implement and expressive.

Kernel and feature map definition

k(D,D′) :=
1

8πσ

∑
p∈D, q∈D′

exp(−8−1σ−1‖p− q‖2)− exp(−8−1σ−1‖p− q‖2)

Φ(x) :=
1

4πσ

∑
p∈D

exp(−4−1σ−1‖x− p‖2)− exp(−4−1σ−1‖x− p‖2)

5J. Reininghaus, S. Huber, U. Bauer and R. Kwitt, ‘A stable multi-scale kernel for topological machine learning’,
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Red Hook, NY, USA: Curran Associates, Inc., 2015,
pp. 4741–4748
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A Stable Multi-Scale Kernel for Topological Machine Learning
Feature map illustration

Persistence diagram σ = 0.1 σ = 0.5 σ = 1.0
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More kernels & applications

Alternative formulations exist, based on sliced Wasserstein distance calculations,6 kernel em-
beddings,7 or Riemannian geometry.8

Applications
� Kernel PCA for visualisation, dimensionality reduction, and feature generation
� Kernel SVM for classification
� Kernel SVR for regression

6M. Carrière, M. Cuturi and S. Oudot, ‘Sliced Wasserstein Kernel for Persistence Diagrams’, ed. by D. Precup and Y. W. Teh,
vol. 70, Proceedings of Machine Learning Research, PMLR, 2017, pp. 664–673

7G. Kusano, K. Fukumizu and Y. Hiraoka, ‘Kernel Method for Persistence Diagrams via Kernel Embedding and Weight Factor’,
Journal of Machine Learning Research 18.189, 2018, pp. 1–41

8T. Le and M. Yamada, ‘Persistence Fisher Kernel: A Riemannian Manifold Kernel for Persistence Diagrams’, Advances in Neural
Information Processing Systems, ed. by S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi and R. Garnett, vol. 31,
Curran Associates, Inc., 2018, pp. 10007–10018
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Betti curves
A simplified representation of persistence diagrams
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Betti curve

The Betti curve is a function mapping a persistence diagram to an integer-valued curve, i.e. each
Betti curve is a functionB : R → N.
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Properties of Betti curves

� Easy to calculate
� Simple representation, ‘living’ in the space of piecewise linear functions
� Vector space operations are possible (addition, scalar multiplication)
� Distances and kernels can be defined9

� No simple stability theorem, though!

Kernel

kp(D,D′) := −
(∫

R

|BD(x)− BD′(x)|pdx
) 1

p

9B. Rieck, F. Sadlo and H. Leitte, ‘Topological Machine Learning with Persistence Indicator Functions’, Topological
Methods in Data Analysis and Visualization V, ed. by H. Carr, I. Fujishiro, F. Sadlo and S. Takahashi, Cham, Switzerland:
Springer, 2020, pp. 87–101, arXiv: 1907.13496 [math.AT]
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Betti curves
Exploiting the vector space structure
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Permits hypothesis testing or comparing means of distributions!10

10B. Rieck, F. Sadlo and H. Leitte, ‘Topological Machine Learning with Persistence Indicator Functions’, Topological
Methods in Data Analysis and Visualization V, ed. by H. Carr, I. Fujishiro, F. Sadlo and S. Takahashi, Cham, Switzerland:
Springer, 2020, pp. 87–101, arXiv: 1907.13496 [math.AT]
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Persistence landscapes

� Calculate rank of ‘covered’ topological features of a diagram
� ‘Peel off’ layers iteratively
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This formulation is due to Peter Bubenik;11 it has beneficial statistical properties, and also permits
the efficient calculation of distances and kernels!

11P. Bubenik, ‘Statistical Topological Data Analysis Using Persistence Landscapes’, Journal of Machine Learning
Research 16, 2015, pp. 77–102
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Persistence landscapes
Properties and recent work

� The landscape can be sampled at regular intervals to obtain a fixed-size feature vector.
� Built-in hierarchy!
� Bijective mapping (no information lost).
� Stability theorems hold.
� Recently: usage as neural network layer!12

12K. Kim, J. Kim, M. Zaheer, J. Kim, F. Chazal and L. Wasserman, ‘PLLay: Efficient Topological Layer based on
Persistent Landscapes’, Advances in Neural Information Processing Systems, ed. by H. Larochelle, M. Ranzato, R. Hadsell,
M. F. Balcan and H. Lin, vol. 33, Curran Associates, Inc., 2020, pp. 15965–15977
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Other functional summaries
Template functions13

Approximating Cont. Fcns. on Persistence Diagrams

Approximating Continuous Functions on Persistence
Diagrams Using Template Functions

Jose A. Perea joperea@msu.edu
Elizabeth Munch muncheli@egr.msu.edu
Department of Computational Mathematics, Science, and Engineering; and
Department of Mathematics

Firas A. Khasawneh khasawn3@egr.msu.edu

Department of Mechanical Engineering

Michigan State University

East Lansing, MI 48824, USA

Abstract

The persistence diagram is an increasingly useful tool from Topological Data Analysis,
but its use alongside typical machine learning techniques requires mathematical finesse.
The most success to date has come from methods that map persistence diagrams into Rn,
in a way which maximizes the structure preserved. This process is commonly referred to
as featurization. In this paper, we describe a mathematical framework for featurization
using template functions. These functions are general as they are only required to be
continuous and compactly supported. We discuss two realizations: tent functions, which
emphasize the local contributions of points in a persistence diagram, and interpolating
polynomials, which capture global pairwise interactions. We combine the resulting features
with classification and regression algorithms on several examples including shape data and
the Rossler system. Our results show that using template functions yields high accuracy
rates that match and often exceed those of existing featurization methods. One counter-
intuitive observation is that in most cases using interpolating polynomials, where each point
contributes globally to the feature vector, yields significantly better results than using tent
functions, where the contribution of each point is localized. Along the way, we provide a
complete characterization of compactness in the space of persistence diagrams.

Keywords: Topological Data Analysis, Persistent Homology, Machine Learning, Featur-
ization, Bottleneck Distance

1. Introduction

Many machine learning tasks can be reduced to the following problem: Approximate a
continuous function defined on a topological space, the “ground truth,” given the function
values (or approximations thereof) on some subset of the points. This task has been well
studied for data sitting in Euclidean space; however, more work is necessary to extend these
ideas to arbitrary topological spaces. In this paper, we focus on the task of classification
and regression on the space of persistence diagrams endowed with the bottleneck distance,
(D, dB). These objects arise in the field of Topological Data Analysis (TDA) as signatures
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� Evaluate template (tent function) on persistence diagram.
� This incorporates more than just point information!

Let g be a template function operating on persistence pairs, then we
obtain a simple embedding based on summation:

f : R×R ∪ {∞} → R

D 7→
∑
x∈D

g(x)

Obtain a feature vector by using multiple template functions!

13J. A. Perea, E. Munch and F. A. Khasawneh, ‘Approximating Continuous Functions on Persistence Diagrams
Using Template Functions’, Foundations of Computational Mathematics, 2022
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Histogram-based vectorisation14

Persistence Bag-of-Words for Topological Data Analysis
Bartosz Zieliński1 , Michał Lipiński1 , Mateusz Juda1 ,

Matthias Zeppelzauer2 and Paweł Dłotko3

1The Institute of Computer Science and Computer Mathematics,
Faculty of Mathematics and Computer Science, Jagiellonian University
2Media Computing Group, Institute of Creative Media Technologies,

St. Pölten University of Applied Sciences,
3Department of Mathematics and Swansea Academy of Advanced Computing,

Swansea University
{bartosz.zielinski, michal.lipinski, mateusz.juda}@uj.edu.pl, m.zeppelzauer@fhstp.ac.at,

p.t.dlotko@swansea.ac.uk

Abstract
Persistent homology (PH) is a rigorous mathemati-
cal theory that provides a robust descriptor of data
in the form of persistence diagrams (PDs). PDs
exhibit, however, complex structure and are diffi-
cult to integrate in today’s machine learning work-
flows. This paper introduces persistence bag-of-
words: a novel and stable vectorized representa-
tion of PDs that enables the seamless integration
with machine learning. Comprehensive experi-
ments show that the new representation achieves
state-of-the-art performance and beyond in much
less time than alternative approaches.

1 Introduction
Topological data analysis (TDA) provides a powerful frame-
work for the structural analysis of high-dimensional data. A
main tool of TDA is Persistent Homology (PH) [Edelsbrun-
ner and Harer, 2010], which currently gains increasing im-
portance in data science [Ferri, 2017]. It has been applied to
a number of disciplines including, biology [Gameiro et al.,
2014], material science [Lee et al., 2017], analysis of finan-
cial markets [Gidea and Katz, 2018]. Persistence homology
is also used as a novel measure of GANs (Generative Ad-
versarial Networks) performance [Khrulkov and Oseledets,
2018], and as a complexity measure for neural network archi-
tectures [Rieck et al., 2018]. PH can be efficiently computed
using various currently available tools [Bauer et al., 2017;
Dey et al., 2019; Maria et al., 2014]. A basic introduction to
PH is given in the supplementary material (SM in the follow-
ing)1.

The common output representation of PH are persistence
diagrams (PDs) which are multisets of points in R2. Due to
their variable size, PDs are not easy to integrate within com-
mon data analysis, statistics and machine learning workflows.
To alleviate this problem, a number of kernel functions and

1Supplementary material: http://www.ii.uj.edu.pl/∼zielinsb/
papers/2019 ijcai supplement.pdf

vectorization methods for PDs have been introduced. Kernel-
based approaches have a strong theoretical background but
in practice they often become inefficient when the number of
training samples is large. As the entire kernel matrix must
usually be computed explicitly (like in case of SVMs), this
leads to roughly quadratic complexity in computation time
and memory with respect to the size of the training set. Fur-
thermore, such approaches are limited to kernelized methods,
such as SVM and kernel PCA. Vectorized representations in
contrast are compatible with a much wider range of meth-
ods and do not suffer from complexity constraints of kernels.
Since they require a spatial quantization of the PD they might
suffer from a loss in precision compared to kernels, especially
since PDs are sparsely and unevenly populated structures.

In this work, we present a novel spatially adaptive and thus
more accurate representation of PDs, which aims at com-
bining the large representational power of kernel-based ap-
proaches with the general applicability of vectorized repre-
sentations. To this end, we extend the popular bag-of-words
(BoW) encoding (originating from text and image retrieval)
to TDA to cope with the inherent sparsity of PDs [McCallum
and Nigam, 1998; Sivic and Zisserman, 2003]. The proposed
adaptation of BoW gives a universally applicable fixed-sized
feature vector of low-dimension. It is, under mild conditions,
stable with respect to a standard metric in PDs. Experiments
demonstrate that our new representation achieves state-of-
the-art performance and even outperforms numerous compet-
itive methods while requiring orders of magnitude less time
and being more compact. Due to the run-time efficiency of
our approach it may in future enable the application of TDA
for larger-scale data than possible today.

The paper is structured as follows. Section 2 reviews re-
lated approaches. In Section 3 we introduce persistence bag-
of-words and prove its stability. Sections 5 and 6 present ex-
perimental setup, results and discussion. Please consider the
SMa for additional information.

2 Background and Related Work
Different kernel based and vectorized representations have
been introduced to make PDs compatible with statistical anal-

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4489

� Cluster persistence diagram
� Learn representatives
� Learn ‘bag-of-word’ (BOW) representation
� Use quantised BOW representation as feature vector

Parameters are not easy to pick and there is no ‘intuitive’ description of
the resulting representation. This can be overcome, however!

14B. Zieliński, M. Lipiński, M. Juda, M. Zeppelzauer and P. Dłotko, ‘Persistence Bag-of-Words for Topological Data
Analysis’, Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI), 2019, pp. 4489–4495
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Persistence images
Multi-scale descriptors

Algorithm
Use Ψ: R2 → R to turn a diagram D into a surface via Ψ(z) :=

∑
x,y∈D w(x, y)Φ(x, y, z),

where w(·) is a fixed piecewise linear weight function and Φ(·) denotes a probability distribu-
tion, which is typically chosen to be a normalised symmetric Gaussian. By discretising Ψ (using
an r × r grid), a persistence diagram is transformed into a persistence image.15

15H. Adams et al., ‘Persistence Images: A Stable Vector Representation of Persistent Homology’, Journal of Machine
Learning Research 18.8, 2017, pp. 1–35
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Persistence images
Properties

Journal of Machine Learning Research 18 (2017) 1-35 Submitted 7/16; Published 2/17

Persistence Images: A Stable Vector Representation of
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Abstract

Many data sets can be viewed as a noisy sampling of an underlying space, and tools from
topological data analysis can characterize this structure for the purpose of knowledge dis-
covery. One such tool is persistent homology, which provides a multiscale description of
the homological features within a data set. A useful representation of this homological
information is a persistence diagram (PD). Efforts have been made to map PDs into spaces
with additional structure valuable to machine learning tasks. We convert a PD to a finite-
dimensional vector representation which we call a persistence image (PI), and prove the
stability of this transformation with respect to small perturbations in the inputs. The

c©2017 Adams, et al.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v18/16-337.html.

� Beneficial stability properties
� Intuitive description in terms of density estimates
� Resolution and smoothing parameter are hard to choose
� Representation is not sparse (quadratic scaling with r!)
� Easy to use in a classification setting, though!
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Extensions of persistence images
Learning weights16

Learning metrics for persistence-based summaries
and applications for graph classification

Qi Zhao Yusu Wang
zhao.2017@osu.edu yusu@cse.ohio-state.edu

Computer Science and Engineering Department
The Ohio State University

Columbus, OH 43221

Abstract

Recently a new feature representation framework based on a topological tool called
persistent homology (and its persistence diagram summary) has gained much
momentum. A series of methods have been developed to map a persistence diagram
to a vector representation so as to facilitate the downstream use of machine learning
tools. In these approaches, the importance (weight) of different persistence features
are usually pre-set. However often in practice, the choice of the weight-function
should depend on the nature of the specific data at hand. It is thus highly desirable
to learn a best weight-function (and thus metric for persistence diagrams) from
labelled data. We study this problem and develop a new weighted kernel, called
WKPI, for persistence summaries, as well as an optimization framework to learn
the weight (and thus kernel). We apply the learned kernel to the challenging task
of graph classification, and show that our WKPI-based classification framework
obtains similar or (sometimes significantly) better results than the best results
from a range of previous graph classification frameworks on benchmark datasets.

1 Introduction

In recent years a new data analysis methodology based on a topological tool called persistent
homology has started to attract momentum. The persistent homology is one of the most important
developments in the field of topological data analysis, and there have been fundamental developments
both on the theoretical front (e.g, [23, 10, 13, 8, 14, 5]), and on algorithms / implementations (e.g,
[43, 4, 15, 20, 29, 3]). On the high level, given a domain X with a function f : X → R on it, the
persistent homology summarizes “features” of X across multiple scales simultaneously in a single
summary called the persistence diagram (see the second picture in Figure 1). A persistence diagram
consists of a multiset of points in the plane, where each point p = (b, d) intuitively corresponds to
the birth-time (b) and death-time (d) of some (topological) features of X w.r.t. f . Hence it provides a
concise representation of X , capturing multi-scale features of it simultaneously. Furthermore, the
persistent homology framework can be applied to complex data (e.g, 3D shapes, or graphs), and
different summaries could be constructed by putting different descriptor functions on input data.

Due to these reasons, a new persistence-based feature vectorization and data analysis framework
(Figure 1) has become popular. Specifically, given a collection of objects, say a set of graphs modeling
chemical compounds, one can first convert each shape to a persistence-based representation. The
input data can now be viewed as a set of points in a persistence-based feature space. Equipping this
space with appropriate distance or kernel, one can then perform downstream data analysis tasks (e.g,
clustering).

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

� Obtain persistence images from graph filtration
� Learn a weight function on the persistence image
� Calculate weighted distance between images
� Use this as a kernel in an SVM

16Q. Zhao and Y. Wang, ‘Learning metrics for persistence-based summaries and applications for graph
classification’, Advances in Neural Information Processing Systems, ed. by H. Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alché-Buc, E. Fox and R. Garnett, vol. 32, Curran Associates, Inc., 2019, pp. 9855–9866

Topological Machine Learning: The (W)Hole Truth Bastian Rieck @Pseudomanifold 24/30

https://twitter.com/Pseudomanifold


Other vectorisation methods
Extracting signatures17

EUROGRAPHICS 2015 / Mirela Ben-Chen and Ligang Liu
(Guest Editors)

Volume 34 (2015), Number 5

Stable Topological Signatures for Points on 3D Shapes

Mathieu Carrière1 Steve Y. Oudot1 Maks Ovsjanikov2

1INRIA Saclay 2LIX, École Polytechnique

Figure 1: Our signatures characterize a point x by the birth (leftmost) and death (second left) of the topological features (here,
non-trivial loops) in the neighborhood of x in a provably stable way. We show how to compactly encode these events in a vector
without losing the stability properties. This is useful in a variety of contexts, including shape segmentation and labeling (as
shown on the right) using linear classifiers such as SVM.

Abstract

Comparing points on 3D shapes is among the fundamental operations in shape analysis. To facilitate this task,
a great number of local point signatures or descriptors have been proposed in the past decades. However, the
vast majority of these descriptors concentrate on the local geometry of the shape around the point, and thus are
insensitive to its connectivity structure. By contrast, several global signatures have been proposed that successfully
capture the overall topology of the shape and thus characterize the shape as a whole. In this paper, we propose
the first point descriptor that captures the topology structure of the shape as ‘seen’ from a single point, in a
multiscale and provably stable way. We also demonstrate how a large class of topological signatures, including
ours, can be mapped to vectors, opening the door to many classical analysis and learning methods. We illustrate
the performance of this approach on the problems of supervised shape labeling and shape matching. We show that
our signatures provide complementary information to existing ones and allow to achieve better performance with
less training data in both applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

Shape analysis and comparison lie at the heart of many prob-
lems in computer graphics, including shape retrieval and
classification [FK04], shape labeling [KHS10], shape inter-

polation [KMP07], and deformation transfer [SP04], among
many others. In recent years, a large number of approaches
have been developed for these tasks, which are often based
on devising new signatures or descriptors. Such descrip-
tors facilitate comparison tasks by encoding the information

submitted to EUROGRAPHICS 2015.

Given two pointsx, y in a persistence diagram, calculate

m(x, y) := min{‖x− y‖∞, d∆(x), d∆(y)},

where d∆(x) denotes the L∞ distance to the diagonal. Sort allm(x, y)
in descending order and pick k of them (padding with zeroes) to obtain
a fixed-size feature vector representation. This is very expressive, but the
computation scales quadratically with diagram size.

17M. Carrière, S. Y. Oudot and M. Ovsjanikov, ‘Stable topological signatures for points on 3D shapes’, Proceedings of
the Eurographics Symposium on Geometry Processing (SGP), Aire-la-Ville, Switzerland, Switzerland: Eurographics
Association, 2015, pp. 1–12
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Other vectorisation methods
Summary statistics

Norms of a persistence diagram

‖D‖∞ := max
x,y∈D

pers(x, y)p and ‖D‖p := p

√ ∑
x,y∈D

pers(x, y)p,

These norms are stable and highly useful in obtaining simple descriptions of time-varying per-
sistence diagrams!
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Example
Total persistence of a time series of persistence diagrams

20 40 60 80 100 120 140 160
2.8 · 105
3 · 105

3.2 · 105
3.4 · 105

Multiple curves can be easily compared with each other—making this an excellent proxy for more
complicated distance calculations.
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Generic vectorisation based on signatures18

Persistence paths and signature features
in topological data analysis

Ilya Chevyrev, Vidit Nanda, and Harald Oberhauser

ABSTRACT. We introduce a new feature map for barcodes that arise in persistent homol-
ogy computation. The main idea is to first realize each barcode as a path in a convenient
vector space, and to then compute its path signature which takes values in the tensor alge-
bra of that vector space. The composition of these two operations — barcode to path, path
to tensor series — results in a feature map that has several desirable properties for sta-
tistical learning, such as universality and characteristicness, and achieves state-of-the-art
results on common classification benchmarks.

1. Introduction

Algebraic topology provides a promising framework for extracting nonlinear features
from finite metric spaces via the theory of persistent homology [17, 26, 28]. Persistent ho-
mology has solved a host of data-driven problems in disparate fields of science and en-
gineering — examples include signal processing [30], proteomics [16], cosmology [32],
sensor networks [13], molecular chemistry [34] and computer vision [23]. The typical
output of persistent homology computation is called a barcode, and it constitutes a finite
topological invariant of the coarse geometry which governs the shape of a given point
cloud.

For the purposes of this introduction, it suffices to think of a barcode as a (multi)set
of intervals [b•,d•), each identifying those values of a scale parameter ε ≥ 0 at which
some topological feature — such as a connected component, a tunnel, or a cavity — is
present when the input metric space is thickened by ε. A central advantage of persistent
homology is its remarkable stability theorem [9, Ch. 5.6]. This result asserts that the map
Met→ Bar which assigns barcodes to finite metric spaces is 1-Lipschitz when its source
and target are equipped with certain natural metrics.

Persistence paths and signature features. Notwithstanding their usefulness for cer-
tain tasks, barcodes are notoriously unsuitable for standard statistical inference because
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8 � Different representations can also give rise to paths.
� Use path signature (a universal non-linearity on paths of bounded

variation) to compare them.
� Path signatures have several beneficial properties, one of them

being stability!
� Promising results, but computationally ‘heavy’.

18I. Chevyrev, V. Nanda and H. Oberhauser, ‘Persistence Paths and Signature Features in Topological Data
Analysis’, IEEE Transactions on Pattern Analysis and Machine Intelligence 42.1, 2020, pp. 192–202
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Which method to use in practice?

Start

Persistence images
Features required

Multi-scale kernel
Small diagrams

Betti curves
Large diagrams

No features required
Classification/Visualisation

p-norm /∞-norm
Summaries

Persistence landscapes

Statistics
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Take-away messages

� The original persistence diagram is cumbersome to work with due to its multiset structure.
� There are numerous other topological representations for different usage scenarios.
� Two large classes of methods exist, kernel-based and feature-based (although some ker-

nels also give rise to finite-dimensional features).
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