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Preliminaries

Do you have feedback or any questions? Write to bastian.rieck@helmholtz-muenchen.de or
reach out to @Pseudomanifold on Twitter. You can find the slides and additional information
with links to more literature here:

https://heidelberg.topology.rocks
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Recap

� The persistence diagram is the ‘basic’ topological feature descriptor.
� Multiple alternatives exist, with different key properties.
� Their choice is application-dependent.
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In this lecture
Putting everything together

How can we build topology-based machine learning models?

Topological Machine Learning: The (W)Hole Truth Bastian Rieck @Pseudomanifold 3/43

https://twitter.com/Pseudomanifold


Topological machine learning



One pipeline to rule them all?

Point cloud

Persistent homology Persistence diagram(s) Machine learning

� A. Poulenard, P. Skraba and M. Ovsjanikov, ‘Topological Function Optimization for Continuous Shape Matching’,
Computer Graphics Forum 37.5, 2018, pp. 13–25

� M. Moor∗, M. Horn∗, B. Rieck† and K. Borgwardt†, ‘Topological Autoencoders’, Proceedings of the 37th
International Conference on Machine Learning (ICML), 2020, pp. 7045–7054, arXiv: 1906.00722 [cs.LG]

� M. Carrière, F. Chazal, M. Glisse, Y. Ike, H. Kannan and Y. Umeda, ‘Optimizing persistent homology based
functions’, Proceedings of the 38th International Conference on Machine Learning (ICML), 2021, pp. 1294–1303
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Finding topology-based representations



Topological autoencoders

Topological Autoencoders

Michael Moor † 1 2 Max Horn † 1 2 Bastian Rieck ‡ 1 2 Karsten Borgwardt ‡ 1 2

Abstract

We propose a novel approach for preserving topo-
logical structures of the input space in latent rep-
resentations of autoencoders. Using persistent ho-
mology, a technique from topological data analy-
sis, we calculate topological signatures of both the
input and latent space to derive a topological loss
term. Under weak theoretical assumptions, we
construct this loss in a differentiable manner, such
that the encoding learns to retain multi-scale con-
nectivity information. We show that our approach
is theoretically well-founded and that it exhibits
favourable latent representations on a synthetic
manifold as well as on real-world image data sets,
while preserving low reconstruction errors.

1. Introduction
While topological features, in particular multi-scale features
derived from persistent homology, have seen increasing use
in the machine learning community (Carrière et al., 2019,
Guss & Salakhutdinov, 2018, Hofer et al., 2017, 2019a,b,
Ramamurthy et al., 2019, Reininghaus et al., 2015, Rieck
et al., 2019a,b), employing topology directly as a constraint
for modern deep learning methods remains a challenge. This
is due to the inherently discrete nature of these computa-
tions, making backpropagation through the computation of
topological signatures immensely difficult or only possible
in certain special circumstances (Chen et al., 2019, Hofer
et al., 2019a, Poulenard et al., 2018).

This work presents a novel approach that permits obtaining
gradients during the computation of topological signatures.
This makes it possible to employ topological constraints
while training deep neural networks, as well as building
topology-preserving autoencoders. Specifically, we make

†Equal contribution. ‡These authors jointly directed this
work. 1Department of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland 2SIB Swiss Institute of Bioin-
formatics, Switzerland. Correspondence to: Karsten Borgwardt
<karsten.borgwardt@bsse.ethz.ch>.

Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

the following contributions:

1. We develop a new topological loss term for autoen-
coders that helps harmonise the topology of the data
space with the topology of the latent space.

2. We prove that our approach is stable on the level of
mini-batches, resulting in suitable approximations of
the persistent homology of a data set.

3. We empirically demonstrate that our loss term aids
in dimensionality reduction by preserving topological
structures in data sets; in particular, the learned latent
representations are useful in that the preservation of
topological structures can improve interpretability.

2. Background: Persistent Homology
Persistent homology (Barannikov, 1994, Edelsbrunner &
Harer, 2008) is a method from the field of computational
topology, which develops tools for analysing topological fea-
tures (connectivity-based features such as connected com-
ponents) of data sets. We first introduce the underlying
concept of simplicial homology. For a simplicial complex
K, i.e. a generalised graph with higher-order connectivity
information such as cliques, simplicial homology employs
matrix reduction algorithms to assign K a family of groups,
the homology groups. The dth homology group Hd(K) of
K contains d-dimensional topological features, such as con-
nected components (d = 0), cycles/tunnels (d = 1), and
voids (d = 2). Homology groups are typically summarised
by their ranks, thereby obtaining a simple invariant “signa-
ture” of a manifold. For example, a circle in R2 has one
feature with d = 1 (a cycle), and one feature with d = 0 (a
connected component).

In practice, the underlying manifoldM is unknown and we
are working with a point cloud X := {x1, . . . , xn} ⊆ Rd
and a metric dist : X × X → R such as the Euclidean
distance. Persistent homology extends simplicial homol-
ogy to this setting: instead of approximatingM by means
of a single simplicial complex, which would be an unsta-
ble procedure due to the discrete nature of X , persistent
homology tracks changes in the homology groups over mul-
tiple scales of the metric. This is achieved by construct-
ing a special simplicial complex, the Vietoris–Rips com-
plex (Vietoris, 1927). For 0 ≤ ε < ∞, the Vietoris–Rips
complex of X at scale ε, denoted by Rε(X), contains all

Michael Moor Max Horn Karsten Borgwardt
� Michael_D_Moor � ExpectationMax � kmborgwardt

M. Moor∗, M. Horn∗, B. Rieck† and K. Borgwardt†, ‘Topological Autoencoders’, Proceedings of the 37th International
Conference on Machine Learning (ICML), 2020, pp. 7045–7054, arXiv: 1906.00722 [cs.LG]
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Topological autoencoders
Motivation
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Topological autoencoders
Motivation, continued
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Topological autoencoders
Overview

Z
Latent code

X
Input data

X̃
Reconstruction

Reconstruction loss

ε

ε

ε

ε
Topological loss
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Topological autoencoders
Main intuition

Align persistence diagrams of an input batch and of a latent batch using a loss function!

Why this works in theory

LetX be a point cloud of cardinalityn andX(m) be one subsample ofX of cardinalitym, i.e.
X(m) ⊆ X , sampled without replacement. We can bound the probability of the persistence
diagrams ofX(m) exceeding a threshold in terms of the bottleneck distance as

P
(

W∞

(
DX,DX(m)

)
>ε
)
≤ P

(
distH

(
X,X(m)

)
>2ε

)
,

where distH denotes the Hausdorff distance. In other words: mini-batches are topologically similar if
the subsampling is not too coarse.
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Topological autoencoders
Gradient calculation intuition

Distance matrix A
0 1 9 10
1 0 7 8
9 7 0 3
10 8 3 0
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ε

ε

Every point in the persistence diagram can be mapped to one entry in the distance matrix! Each
entry is a distance, so it can be changed during training (at least in the latent space).
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Topological autoencoders
Loss term

Lt := LX→Z +LZ→X

LX→Z := 1
2

∥∥AX
[
πX

]
− AZ

[
πX

]∥∥2 LZ→X := 1
2

∥∥AZ
[
πZ

]
− AX

[
πZ

]∥∥2
� X : input space
� Z : latent space
� AX : distances in input mini-batch
� AZ : distances in latent mini-batch
� πX : persistence pairing of input mini-batch
� πZ : persistence pairing of latent mini-batch

The loss is bi-directional!
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Qualitative evaluation
‘Spheres’ data set

PCA UMAP Autoencoder

Isomap t-SNE Topological autoencoder
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Quantitative evaluation

Data set Method KL0.01 KL0.1 KL1 `-MRRE `-Cont `-Trust `-RMSE MSE (data)

‘Spheres’

Isomap 0.181 0.420 0.00881 0.246 0.790 0.676 10.4
PCA 0.332 0.651 0.01530 0.294 0.747 0.626 11.8 0.9610
t-SNE 0.152 0.527 0.01271 0.217 0.773 0.679 8.1
UMAP 0.157 0.613 0.01658 0.250 0.752 0.635 9.3
AE 0.566 0.746 0.01664 0.349 0.607 0.588 13.3 0.8155
TopoAE 0.085 0.326 0.00694 0.272 0.822 0.658 13.5 0.8681

‘Fashion-MNIST’

PCA 0.356 0.052 0.00069 0.057 0.968 0.917 9.1 0.1844
t-SNE 0.405 0.071 0.00198 0.020 0.967 0.974 41.3
UMAP 0.424 0.065 0.00163 0.029 0.981 0.959 13.7
AE 0.478 0.068 0.00125 0.026 0.968 0.974 20.7 0.1020
TopoAE 0.392 0.054 0.00100 0.032 0.980 0.956 20.5 0.1207

‘MNIST’

PCA 0.389 0.163 0.00160 0.166 0.901 0.745 13.2 0.2227
t-SNE 0.277 0.133 0.00214 0.040 0.921 0.946 22.9
UMAP 0.321 0.146 0.00234 0.051 0.940 0.938 14.6
AE 0.620 0.155 0.00156 0.058 0.913 0.937 18.2 0.1373
TopoAE 0.341 0.110 0.00114 0.056 0.932 0.928 19.6 0.1388
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Topology-driven graph learning



Classifying unlabelled graphs
Using ‘classical’ machine learning models

1 Calculate degree filtration (or another descriptor)
2 Repeat the analysis pipeline described above
3 Learn weights for topological descriptors to improve predictive power1

1Q. Zhao and Y. Wang, ‘Learning metrics for persistence-based summaries and applications for graph
classification’, Advances in Neural Information Processing Systems, ed. by H. Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alché-Buc, E. Fox and R. Garnett, vol. 32, Curran Associates, Inc., 2019, pp. 9855–9866
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Betti curves
Classification scenario example

� Use REDDIT-BINARY data set (co-occurrence
graphs)

� Calculate filtration based on vertex degree
� Calculate persistence diagrams for d = 1 (cycles)
� Given p = 1, use a kernel SVM for classification
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Classifying labelled graphs
Weisfeiler–Lehman iteration & subtree feature vector

A

B

D E
F

C

G
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Classifying labelled graphs
Weisfeiler–Lehman iteration & subtree feature vector

A

B

D E
F

C

G Node Own label Adjacent labels

A
B
C
D
E
F
G
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Classifying labelled graphs
Weisfeiler–Lehman iteration & subtree feature vector

A

B

D E
F

C

G Node Own label Adjacent labels Hashed label

A
B
C
D
E
F
G
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Classifying labelled graphs
Weisfeiler–Lehman iteration & subtree feature vector

A

B

D E
F

C

G Label
Count 3 1 2 1

Φ(G) := (3, 1, 2, 1)

CompareG andG′ by evaluating a kernel betweenΦ(G) and
Φ(G′) (linear, RBF, …).
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Static topological features for graph classification

A Persistent Weisfeiler–Lehman Procedure for Graph Classification

Bastian Rieck * 1 Christian Bock * 1 Karsten Borgwardt 1

Abstract
The Weisfeiler–Lehman graph kernel exhibits
competitive performance in many graph classifi-
cation tasks. However, its subtree features are
not able to capture connected components and
cycles, topological features known for character-
ising graphs. To extract such features, we lever-
age propagated node label information and trans-
form unweighted graphs into metric ones. This
permits us to augment the subtree features with
topological information obtained using persistent
homology, a concept from topological data anal-
ysis. Our method, which we formalise as a gener-
alisation of Weisfeiler–Lehman subtree features,
exhibits favourable classification accuracy and
its improvements in predictive performance are
mainly driven by including cycle information.

1. Introduction
Graph-structured data sets are ubiquitous in a variety of
different application domains, each of them posing a sep-
arate challenge while also requiring different tasks to be
solved. A common task involves graph classification, for
which a variety of methods exists. These methods comprise
convolutional neural networks (Duvenaud et al. 2015), re-
current neural networks (Lei et al. 2017), or Hilbert space
methods (Vishwanathan et al. 2010), the latter also being
referred to as graph kernels. While several approaches for
defining graph kernels exist, the most common one uses the
R-convolution framework (Haussler 1999), which makes
it possible to define the similarity between two graphs as a
function of the similarity of their substructures.

Substructures that have been used for graph classifica-
tion range from graphlets (Shervashidze et al. 2009), i.e.
small non-isomorphic graphs of fixed size, over shortest

*Equal contribution 1Department of Biosystems Science and
Engineering, ETH Zurich, 4058 Basel, Switzerland. Correspon-
dence to: Bastian Rieck <bastian.rieck@bsse.ethz.ch>, Karsten
Borgwardt <karsten.borgwardt@bsse.ethz.ch>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

paths (Borgwardt & Kriegel 2005), to random walks (Gärt-
ner et al. 2003, Kashima et al. 2003, Sugiyama & Borg-
wardt 2015). One of the most powerful substructures is the
set of subtree patterns (Ramon & Gärtner 2003), i.e. pat-
terns based on rooted subgraphs of a graph. Their compu-
tational complexity made their applicability somewhat lim-
ited, until the Weisfeiler–Lehman (WL) graph kernel frame-
work (Shervashidze & Borgwardt 2009, Shervashidze et al.
2011) was developed. Properly trained, it still constitutes
the state-of-the-art method for many graph classification
tasks. The framework is based on the idea of iteratively
propagating (node) label information through a graph, lead-
ing to a feature vector representation that can be used to
assess the dissimilarity of two graphs.

One of the disadvantages of this framework is that its re-
labelling step, i.e. the step in which subtree patterns are
being compressed, is somewhat “brittle”: labels are only
compared with a Dirac kernel, making their dissimilarity a
coarse function. Moreover, the subtree feature vector only
contains counts of compressed labels and can neither ac-
count for their relevance with respect to the topology of the
graph nor capture connected components and cycles, both
of which are important and interpretable features for char-
acterising graphs (Rieck et al. 2018, Sizemore et al. 2017).
We thus propose an enhancement of the original WL stabil-
isation procedure that uses recent advances in topological
data analysis (Munch 2017) to alleviate these issues. Our
contributions are as follows:

- We measure the relevance of topological features (con-
nected components and cycles) in graphs and use them
to define a novel set of WL subtree features, which we
show to be a generalised version of the original ones.

- We develop a topology-based kernel that uses an iterative
variant of the WL stabilisation procedure to classify non-
attributed graphs.

- We demonstrate that our proposed features perform
favourably on a range of graph classification benchmark
data sets. In particular, we empirically show that the
inclusion of cycle information yields classification accu-
racy improvements over state-of-the-art methods.

Christian Bock Karsten Borgwardt
� chrs_bock � kmborgwardt

� The Weisfeiler–Lehman algorithm vectorises labelled graphs
� Persistent homology captures relevant topological features
� We can combine them to obtain a generalised formulation
� This requires a distance between multisets

B. Rieck∗, C. Bock∗ and K. Borgwardt, ‘A Persistent Weisfeiler–Lehman Procedure for Graph Classification’, Proceedings
of the 36th International Conference on Machine Learning (ICML), ed. by K. Chaudhuri and R. Salakhutdinov, Proceedings of
Machine Learning Research 97, PMLR, 2019, pp. 5448–5458
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A distance between label multisets

LetA = {la11 , la22 , . . . } andB = {lb11 , lb22 , . . . } be two multisets that are defined over the same
label alphabetΣ = {l1, l2, . . . }.

Transform the sets into count vectors, i.e. ~x := [a1, a2, . . . ] and ~y := [b1, b2, . . . ].

Calculate their multiset distance as

dist(~x, ~y) :=

(∑
i

|ai − bi|p
) 1

p

,

i.e. the pth Minkowski distance, for p ∈ R. Since nodes and their multisets are in one-to-one
correspondence, we now have a metric on the graph!
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Multiset distance
Example for p = 1

A

B

D E
F

C

G
dist(C,E) = dist

(
{ 3, 1}, { 2, 1}

)
= dist([3, 1], [2, 1])
= 1

dist(C,A) = dist
(
{ 3, 1}, { 1}

)
= dist([3, 1], [1, 0])
= 3
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Extending the multiset distance to a distance between vertices

Use vertex label from previous Weisfeiler–Lehman iteration, i.e. l(h−1)
vi , as well as l(h)vi , the one

from the current iteration:

dist(vi, vj) :=
[

l(h−1)
vi 6= l(h−1)

vj

]
+ dist

(
l(h)vi , l(h)vj

)
+ τ

τ ∈ R>0 is required to make this into a proper metric. This turns any labelled graph into a
weighted graph whose persistent homology we can calculate!
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Vertex distance, multi-scale properties
Example

h = 0
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Vertex distance, multi-scale properties
Example

h = 0 h = 1 h = 2
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Vertex distance, multi-scale properties
Example

h = 0 h = 1 h = 2 h = 3
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Vertex distance, multi-scale properties
Example

h = 0 h = 1 h = 2 h = 3
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Persistence-based Weisfeiler–Lehman feature vectors

Connected components

Φ
(h)
P-WL :=

[
p(h)(l0), p

(h)(l1), . . .
]

p(h)(li) :=
∑

l(v)=li

pers(v)p,

Cycles

Φ
(h)
P-WL-C :=

[
z(h)(l0), z

(h)(l1), . . .
]

z(h)(li) :=
∑

li∈l(u,v)

pers(u, v)p,
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Persistence-based Weisfeiler–Lehman feature vectors

Connected components

Φ
(h)
P-WL :=

[
p(h)(l0), p

(h)(l1), . . .
]

p(h)(li) :=
∑

l(v)=li

pers(v)p,

Cycles

Φ
(h)
P-WL-C :=

[
z(h)(l0), z

(h)(l1), . . .
]

z(h)(li) :=
∑

li∈l(u,v)

pers(u, v)p,

Bonus
We can re-define the vertex distance to obtain the original Weisfeiler–Lehman subtree fea-
tures (plus information about cycles):

dist(vi, vj) :=

{
1 if vi 6= vj

0 otherwise
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Classification results

D & D MUTAG NCI1 NCI109 PROTEINS PTC-MR PTC-FR PTC-MM PTC-FM

V-Hist 78.32 ± 0.35 85.96 ± 0.27 64.40 ± 0.07 63.25 ± 0.12 72.33 ± 0.32 58.31 ± 0.27 68.13 ± 0.23 66.96 ± 0.51 57.91 ± 0.83
E-Hist 72.90 ± 0.48 85.69 ± 0.46 63.66 ± 0.11 63.27 ± 0.07 72.14 ± 0.39 55.82 65.53 61.61 59.03

RetGK∗ 81.60 ± 0.30 90.30 ± 1.10 84.50 ± 0.20 75.80 ± 0.60 62.15 ± 1.60 67.80 ± 1.10 67.90 ± 1.40 63.90 ± 1.30

WL 79.45 ± 0.38 87.26 ± 1.42 85.58 ± 0.15 84.85 ± 0.19 76.11 ± 0.64 63.12 ± 1.44 67.64 ± 0.74 67.28 ± 0.97 64.80 ± 0.85
Deep-WL∗ 82.94 ± 2.68 80.31 ± 0.46 80.32 ± 0.33 75.68 ± 0.54 60.08 ± 2.55

P-WL 79.34 ± 0.46 86.10 ± 1.37 85.34 ± 0.14 84.78 ± 0.15 75.31 ± 0.73 63.07 ± 1.68 67.30 ± 1.50 68.40 ± 1.17 64.47 ± 1.84
P-WL-C 78.66 ± 0.32 90.51 ± 1.34 85.46 ± 0.16 84.96 ± 0.34 75.27 ± 0.38 64.02 ± 0.82 67.15 ± 1.09 68.57 ± 1.76 65.78 ± 1.22
P-WL-UC 78.50 ± 0.41 85.17 ± 0.29 85.62 ± 0.27 85.11 ± 0.30 75.86 ± 0.78 63.46 ± 1.58 67.02 ± 1.29 68.01 ± 1.04 65.44 ± 1.18

Topological Machine Learning: The (W)Hole Truth Bastian Rieck @Pseudomanifold 23/43

https://twitter.com/Pseudomanifold


Graph representations
Fundamental properties

� Two graphsG andG′ can have a different number of vertices.
� Hence, we require a vectorised representation f : G → Rd of graphs.
� Such a representation f needs to be permutation-invariant.
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Now and then

Shallow approaches
� node2vec (encoder–decoder)
� Graph kernels (RKHS feature maps)
� Laplacian-based embeddings

Deep approaches
� Graph convolutional networks
� Graph isomorphism networks
� Graph attention networks
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Message passing
The predominant paradigm in graph machine learning

Neighbouring nodes can exchange messages. If this is iterated, messages can be ‘diffused’ to larger
parts of the graph.

A

B C

D

E

F G

aggregate (sum, mean, …)

� Operations remain local.
� Only require some aggregation function.
� Representations can be combined.
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Graph neural networks in a nutshell

a(k)v := aggregate(k)
({

h(k−1)
u | u ∈ NG(v)

})
h(k)v := combine(k)

(
h(k−1)
v , a(k)v

)
hG := readout

({
h(K)
v | v ∈ vertG

})

This terminology follows K. Xu, W. Hu, J. Leskovec and S. Jegelka, ‘How Powerful are Graph Neural
Networks?’, ICLR, 2019.
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Example
Graph convolutional networks

For this architecture, combine is directly integrated into aggregate. In matrix form, we have

H(k) = σ
(

~D− 1
2 ~A ~D− 1

2 H(k−1)Θ(k−1)
)
,

with ~A := A+ I being the augmented adjacency matrix, ~D its degree matrix, andΘ(k−1) a learnable
weight matrix of dimensions dk−1 × dk.
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A topological layer for graph classification
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ABSTRACT

Graph neural networks (GNNs) are a powerful architecture for tackling graph learn-
ing tasks, yet have been shown to be oblivious to eminent substructures such as
cycles. We present TOGL, a novel layer that incorporates global topological infor-
mation of a graph using persistent homology. TOGL can be easily integrated into
any type of GNN and is strictly more expressive (in terms the Weisfeiler–Lehman
graph isomorphism test) than message-passing GNNs. Augmenting GNNs with
TOGL leads to improved predictive performance for graph and node classification
tasks, both on synthetic data sets, which can be classified by humans using their
topology but not by ordinary GNNs, and on real-world data.

1 INTRODUCTION

Graphs are a natural representation of structured data sets in many domains, including bioinformatics,
image processing, and social network analysis. Numerous methods address the two dominant
graph learning tasks of graph classification or node classification. In particular, graph neural
networks (GNNs) describe a flexible set of architectures for such tasks and have seen many successful
applications over recent years (Wu et al., 2021). At their core, many GNNs are based on iterative
message passing schemes (see Shervashidze and Borgwardt (2009) for an introduction to iterative
message passing in graphs and Sanchez-Lengeling et al. (2021) for an introduction to GNNs). Since
these schemes are collating information over the neighbours of every node, GNNs cannot necessarily
capture certain topological structures in graphs, such as cycles (Bouritsas et al., 2021). These
structures are highly relevant for applications that require connectivity information, such as the
analysis of molecular graphs (Hofer et al., 2020; Swenson et al., 2020).

We address this issue by proposing a Topological Graph Layer (TOGL) that can be easily integrated
into any GNN to make it ‘topology-aware.’ Our method is rooted in the emerging field of topological
data analysis (TDA), which focuses on describing coarse structures that can be used to study the shape
of complex structured and unstructured data sets at multiple scales. We thus obtain a generic way to
augment existing GNNs and increase their expressivity in graph learning tasks. Figure 1 provides a
motivational example that showcases the potential benefits of using topological information: (i) high
predictive performance is reached earlier for a smaller number of layers, and (ii) learnable topological
representations outperform fixed ones if more complex topological structures are present in a data set.

Our contributions. We propose TOGL, a novel layer based on TDA concepts that can be inte-
grated into any GNN. Our layer is differentiable and capable of learning contrasting topological
representations of a graph. We prove that TOGL enhances expressivity of a GNN since it incorporates
the ability to work with multi-scale topological information in a graph. Moreover, we show that
TOGL improves predictive performance of several GNN architectures when topological information
is relevant for the respective task.

1

Max Horn Edward De Brouwer Michael Moor
� @ExpectationMax � @EdwardOnBrew � @Michael_D_Moor

Yves Moreau Karsten Borgwardt
� @kmborgwardt
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Motivation

Status quo
� Graphs are topological objects.
� But GNNs are incapable of recognising certain topological structures!

Challenge

What can we gain when imbuing them with knowledge about the topology?
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Taking stock

� Filtrations provide multi-scale topological features.
� Persistence diagrams serve as topological descriptors.

Questions
� How to obtain ‘good’ filtrations?
� How to use persistence diagrams (i.e. multi-sets) in a differentiable setting?
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Topological graph neural networks
Overview

x(v) ∈ Rd

Node attributes

2 1

2 1 = a
(v)
k

1 …

3 1

1 2 = a
(v)
1

2

k views

…

Diagrams

Ψ[v]

+

x(v)

x̃(v)

Aggregation

x̃(v) ∈ Rd

Output x̃(v)

Φ Ψ

� Use a node mapΦ: Rd → Rk to create k different filtrations of the graph.
� Use a coordinatisation functionΨ to create compatible representations of the node

attributes.
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ChoosingΦ andΨ

� The node mapΦ can be realised using a neural network.
� The coordinatisation functionΨ can be realised using any vectorisation of persistence

diagrams (landscapes, images, …), but we found a differentiable coordinatisation function to be
most effective.2

2C. D. Hofer, F. Graf, B. Rieck, M. Niethammer and R. Kwitt, ‘Graph Filtration Learning’, ICML, 2020.
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Expressivity of TOGL

Theorem
TOGL (and persistent homology) is more expressive than WL[1], i.e. (i) if the WL[1] label sequences for
two graphsG andG′ diverge, there exists an injective filtrationf such that the corresponding persistence
diagramsD0 andD′

0 are not equal, and (ii) there are graphs that WL[1] cannot distinguish but TOGL can!

Example graphs

G G′
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Experiments

� Take existing GNN architecture.
� Replace one layer by TOGL.
� Measure predictive performance.

This strategy ensures that the number of parameters is approximately the same, thus facilitating
a fair comparison!
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Synthetic data sets

Binary classification problem; generate same number of graphs for each of the classes. Use simple
topological structures that are nevertheless challenging to detect with standard GNNs.

Cycles Necklaces
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Cyclesdata set
Weisfeiler–Lehman subtree features

h = 0 h = 1 h = 2 h = 3

These graphs cannot be distinguished based on their WL[1] information.
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Expressivity
Cycles data set
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Necklacesdata set
Weisfeiler–Lehman subtree features

h = 0 h = 1 h = 2 h = 3 h = 4

These graphs cannot be distinguished based on their WL[1] information (some of the graphs in
the data set can be distinguished, though).
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Expressivity
Necklaces data set
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Classifying graphs/nodes based on structural features alone

Existing data sets tend to ‘leak’ information into node attributes, thus decreasing the utility of
topological features. Hence, we replaced all node features by random ones.

Graph classification

Method DD ENZYMES MNIST PROTEINS

GCN-4 68.0± 3.6 22.0± 3.3 76.2± 0.5 68.8± 2.8
GCN-3-TOGL-1 75.1 ± 2.1 30.3 ± 6.5 84.8 ± 0.4 73.8 ± 4.3

GIN-4 75.6± 2.8 21.3± 6.5 83.4± 0.9 74.6 ± 3.1
GIN-3-TOGL-1 76.2 ± 2.4 23.7 ± 6.9 84.4 ± 1.1 73.9± 4.9

GAT-4 63.3± 3.7 21.7± 2.9 63.2± 10.4 67.5± 2.6
GAT-3-TOGL-1 75.7 ± 2.1 23.5 ± 6.1 77.2 ± 10.5 72.4 ± 4.6

Node classification

Pattern

85.5± 0.4
86.6 ± 0.1

84.8± 0.0
86.7 ± 0.1

73.1 ± 1.9
59.6± 3.3
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Classifying benchmark data sets

While we improve baseline classification performance, the best performance is not driven by the
availability of topological structures!

Graph classification

Method CIFAR-10 DD ENZYMES MNIST PROTEINS-full IMDB-B REDDIT-B

GATED-GCN-4 67.3 ± 0.3 72.9 ± 2.1 65.7 ± 4.9 97.3 ± 0.1 76.4 ± 2.9 — —
WL — 77.7 ± 2.0 54.3 ± 0.9 — 73.1 ± 0.5 71.2 ± 0.5 78.0 ± 0.6
WL-OA — 77.8 ± 1.2 58.9 ± 0.9 — 73.5 ± 0.9 74.0 ± 0.7 87.6 ± 0.3

GCN-4 54.2 ± 1.5 72.8 ± 4.1 65.8 ± 4.6 90.0 ± 0.3 76.1 ± 2.4 68.6 ± 4.9 92.8 ± 1.7
GCN-3-TOGL-1 61.7 ± 1.0 73.2 ± 4.7 53.0 ± 9.2 95.5 ± 0.2 76.0 ± 3.9 72.0 ± 2.3 89.4 ± 2.2

7.5 0.4 −12.8 5.5 −0.1 3.4 −3.4

GIN-4 54.8 ± 1.4 70.8 ± 3.8 50.0 ± 12.3 96.1 ± 0.3 72.3 ± 3.3 72.8 ± 2.5 81.7 ± 6.9
GIN-3-TOGL-1 61.3 ± 0.4 75.2 ± 4.2 43.8 ± 7.9 96.1 ± 0.1 73.6 ± 4.8 74.2 ± 4.2 89.7 ± 2.5

6.5 4.4 −6.2 0.0 1.3 1.4 8.0

GAT-4 57.4 ± 0.6 71.1 ± 3.1 26.8 ± 4.1 94.1 ± 0.3 71.3 ± 5.4 73.2 ± 4.1 44.2 ± 6.6
GAT-3-TOGL-1 63.9 ± 1.2 73.7 ± 2.9 51.5 ± 7.3 95.9 ± 0.3 75.2 ± 3.9 70.8 ± 8.0 89.5 ± 8.7

6.5 2.6 24.7 1.8 3.9 −2.4 45.3

Node classification

CLUSTER

60.4 ± 0.4
—
—

57.0 ± 0.9
60.4 ± 0.2

3.4

58.5 ± 0.1
60.4 ± 0.2

1.9

56.6 ± 0.4
58.4 ± 3.7

1.8
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Conclusion

� ‘If all you have is nails, everything looks like a hammer.’3 Our data sets may actually stymie
progress in GNN research because their classification does not necessarily require
structural information.

� Nevertheless, higher-order structures (such as cliques) can be crucial in discerning between
different graphs or data sets.

� Can we also learn sparse filtrations?

♥Acknowledgements

My co-authors Edward, Karsten, Max, Michael, and Yves.

Software
https://github.com/aidos-lab/pytorch-topological

Looking for additional contributors!

3Credit: Mikael Vejdemo-Johannson
Topological Machine Learning: The (W)Hole Truth Bastian Rieck @Pseudomanifold 43/43

https://github.com/aidos-lab/pytorch-topological
https://twitter.com/Pseudomanifold

