

Topologically Autoencoding Cognitive Maps

Maxim Beketov, HSE University

4th Workshop on Topological Methods in Data Analysis **21 September 2023, Heidelberg University**

HSE University Faculty Computer science

International Laboratory of Algebraic Topology and Its Applications

Our Team

Konstantin Sorokin, PhD student

Maxim Beketov, PhD student

Anton Ayzenberg, Prof.

Konstantin Anokhin, Prof., Academician of RAS

Vladimir Sotskov, PhD candidate

Michael Subbotin, MSc student

Place Cells

Environment

Image from: L Wagatsuma, Hiroaki, and Yoko Yamaguchi. "Neural dynamics of the cognitive map in the hippocampus." Cognitive Neurodynamics 1 (2007): 119-141:

O'Keefe, John, and Jonathan Dostrovsky. "The hippocampus as a **spatial map**: preliminary evidence from unit activity in the freely-moving rat." Brain research (1971). (~70k citations)

2014 Nobel Prize in Physiology or Medicine

John O'Keefe

Image from Wiki

† place fields

May-Britt Moser, Edvard I. Moser

The work of Curto, Itskov, Dabaghian et al.

Curto, Carina, and Vladimir Itskov. "Cell groups reveal structure of stimulus space." *PLoS computational biology* 4.10 (2008): e1000205.

Yury Dabaghian

Dabaghian, Y., F. Memoli, L. Frank, and G. Carlsson. "A topological paradigm for hippocampal spatial map formation using persistent homology." PLoS Computational Biology 8, no. 8 (2012).

Our experiments (conducted by V. Sotskov)

We've had: several mice; arenas with 1, 2, 3 holes; ~100-300 visible neurons (calcium imaging)

Autoencoders

Classic Autoencoder is a neural network that learns to map X to Z (lowerdimensional **latent** space) and then Z to X', minimizing the **reconstruction** loss

$$\hat{w} = \underset{w}{\operatorname{argmin}} \|X - \operatorname{dec}(\operatorname{enc}(X))\|^{2}$$

$$= X'$$

(Some regularization term on Z should be added, of course)

 $\operatorname{enc}_{W}: X \to Z \qquad \operatorname{dec}_{W}: Z \to X'$

Autoencoding cognitive maps

Autoencoding with a metric reconstruction penalty

3 layers were enough for this (This in on test set, unseen on training ofc)

We forced the AE to learn the true coordinates with an additional metric dissimilarity loss:

Total loss = |X - dec(end)|Reconstruction

$$c(X)) ||^2 + \lambda || d_{ij}(Y) - d_{ij}(Z) ||$$

on loss

Topological Autoencoders

Moor, Michael, Max Horn, Bastian Rieck, and Karsten Borgwardt "Topological autoencoders" In International conference on machine learning, pp. 7045-7054. PMLR, 2020. https://arxiv.org/abs/1906.00722

(Image from M. Moor's blogpost on the topic – <u>https://michaelmoor.ml/blog/topoae/main/</u>)

Topological Autoencoders: details

PH is stored as a collection of $\{D_0, D_1, I\}$ diagrams - pairs of (birth_scale, death_sc and **pairings** $\{\pi_0, \pi_1, \ldots, \pi_d, \ldots\}$ as j-th simplex s_j appears

In present work, authors only track 0-homology – that is, AE tries to preserve the number (and structure) of connected components! (tracking 1-homology was also tried) To do that, they only need A^{S} – the **distance matrix** of the point cloud, and the

0-pairings – that is, edges

Under the hood, they compute the minimum spanning tree, which is $O(n^2 \alpha(n))$ complexity

$$D_2, \ldots D_d, \ldots$$

pairs of (s_i, s_j) where each d-dimensional feature is born in i-th simplex s_i and dead

Topological Autoencoders: details

The topological loss is "two-sided" in X and Z

$$\mathscr{L}_{topo} = \mathscr{L}_{X \to Z} + \mathscr{L}_{Z \to X}$$
$$\mathscr{L}_{X \to Z} = \frac{1}{2} \| \mathbf{A}^{X} [\pi^{X}] - \mathbf{A}^{Z} [\pi^{X}] \|^{2} \text{ and }$$

Now, for each batch, the AE parameters are encoded to minimize the loss, the gradient is quite simple:

$$\frac{\partial}{\partial \theta} \mathscr{L}_{X \to Z} = \frac{\partial}{\partial \theta} \left(\frac{1}{2} \| \mathbf{A}^{X} [\pi^{X}] - \mathbf{A}^{Z} [\pi^{X}] \|^{2} \right) = - \left(\mathbf{A}^{X} [\pi^{X}] - \mathbf{A}^{Z} [\pi^{X}] \right)^{\top} \left(\frac{\partial \mathbf{A}^{Z} [\pi^{X}]}{\partial \theta} \right)$$
$$= - \left(\mathbf{A}^{X} [\pi^{X}] - \mathbf{A}^{Z} [\pi^{X}] \right)^{\top} \left(\sum_{i=1}^{|\pi^{X}|} \frac{\partial \mathbf{A}^{Z} [\pi^{X}]_{i}}{\partial \theta} \right)$$

For L to be differentiable, **pairwise distances** (entries of A) should be **unique!** (Otherwise the pairing provides a discontinuity)

$$\mathscr{L}_{Z \to X} = \frac{1}{2} \| \mathbf{A}^{Z} [\pi^{Z}] - \mathbf{A}^{X} [\pi^{Z}] \|^{2}$$

Topologically autoencoding 1.0 -

0.8

0.6

This is still work in progress!

0.4

Stay tuned! :)

https://cs.hse.ru/en/ata-lab/

maxbeketov@outlook.com

Thank you for your attention!

