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For What and where is the striatum?
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Anatomy of the basal ganglia

Basal ganglia:
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Striatum is the largest nucleus and main
input stage of the basal ganglia.

Basal ganglia are involved in motor
learning, action-selection and
reinforcement learning.

Their dysfunction leads to a variety of
brain disorders like Huntington’s and
Parkinson’s diseases.
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A Basal ganglia

£

m dSTR
GPe
m GPi

m STN
™ SNc
= SNr

Principal cells, about 95%

dSPN - direct striatal projection neurons (targets directly

the output nuclei GPi/Snr).

iISPN - indirect striatal projection neurons (targets GPe).

21.5 mm3
1.73 million

80500 neuron/mm

Rodent striatum
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Cell type distribution in striatum C Striatal microcircuit
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Interneurons, about 5%

FS — PV+, fast-spiking cells, 1.3%

LTS — NPY/SOM+, low-threshold spiking, 0.8%
ChIN - cholinergic interneurons, 1.1%
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Digital microcircuit reconstruction
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Single-cell morphology reconstruction
Single-cell electrophysiology modelling

Cell placement reproducing realistic neuron densities
Touch detection of putative synapses and synaptic pruning to reproduce realistic
connectivities
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Input setting
Network simulation
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Digital microcircuit reconstruction

Striatum in gray 2174 somas Axons and dendrites
Hypervoxel in in a hypervoxel of 2174 neurons
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Single-cell morphology reconstruction '
Single-cell electrophysiology modelling

Cell placement reproducing realistic neuron densities
Touch detection of putative synapses and synaptlc prunlng to reproduce realistic
connectivities

Input setting
Network simulation

21/09/2023



Digital microcircuit reconstruction

® Single-cell morphology reconstruction
e Single-cell electrophysiology modelling

e Cell placement reproducing realistic neuron densities
® Touch detection of putative synapses and synaptic pruning to reproduce realistic
connectivities

® |nput setting
e Network simulation
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Morphological changes in Parkinson's disease From morphologies to connectivity
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Directed cliques

e Adirected graph G is a pair (V,E) where V is a finite set of vertices (corresponding to neurons) and E is a
set of ordered pairs of distinct vertices (v,w) called edges (corresponding to synaptic connections).

e Avertex vis a source (or a sink) if all edges including v are from (or to) v.

e Aset{v,.,v }of vertices is a n-directed clique if it contains a source and a sink. We refer to directed
cliques as simplices.
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\ dashed lines represent
ablation of interneurons
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Counting number of directed cliques
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Random erosion of the entire PD network connectivity
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Random erosion of only the SPN connectivity
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In summary:

Our work highlighted that just measuring the pairwise
connectivity between neurons gives an incomplete description of
the network connectivity.

Directed clique analysis provided a richer characterization of the

network structure with respect to Parkinson’s disease progression.

Interneurons are crucial in both maintaining the network
connectivity during PD and in the formation of high dimensional
cliques.
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