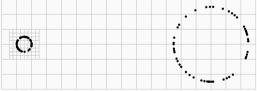

# Adaptive Approximation of Persistent Homology

Maria Herick<sup>1</sup>, Michael Joachim<sup>2</sup>, Jan Vahrenhold<sup>1</sup> University of Münster, Germany September 21st 2023 4th Workshop on Topological Methods in Data Analysis

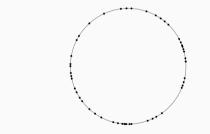

<sup>1</sup>Department of Computer Science <sup>2</sup>Mathematical Institute

# Adaptive Subsampling

#### Instead of this...



#### ...we want something like this:

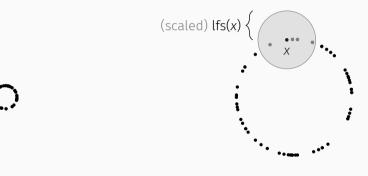



We need to decide how many points to keep in each area...



Idea: Use manifold's curvature/folding to determine (local) sampling density.

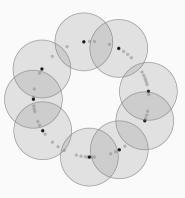
Use (an estimate of) the *local feature size* for adaptive sampling [ACK01, FR02]:




Use (an estimate of) the *local feature size* for adaptive sampling [ACK01, FR02]:



#### Higher values for $lfs(x) \leftrightarrow Lower$ curvature at x


Use (an estimate of) the *local feature size* for adaptive sampling [ACK01, FR02]:



#### Higher values for $lfs(x) \leftrightarrow Lower$ curvature at x

Use (an estimate of) the *local feature size* for adaptive sampling [ACK01, FR02]:





Use (an estimate of) the *local feature size* for adaptive sampling [ACK01, FR02]:

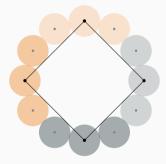
٠

.

.

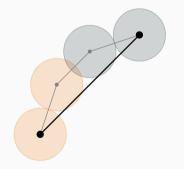
## A Filtration on the Coarsened Subsample




To calculate the distance between two remaining points, we consider their clusters:



## A Filtration on the Coarsened Subsample

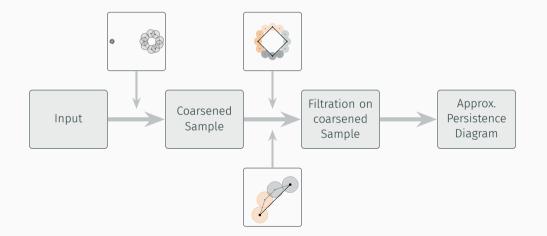



To calculate the distance between two remaining points, we consider their clusters:

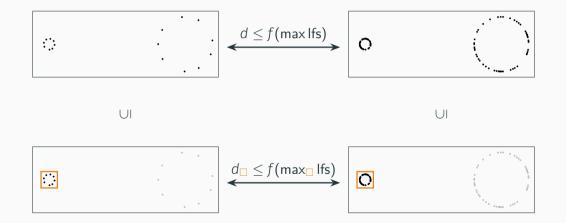


## A Filtration on the Coarsened Subsample

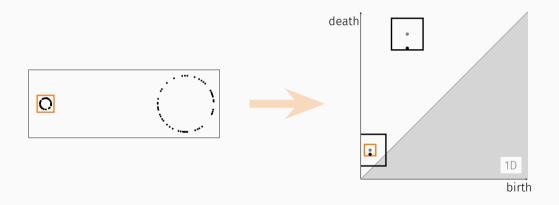





Edges in our filtration

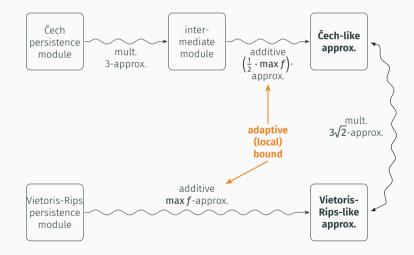

model

paths in the original filtration.

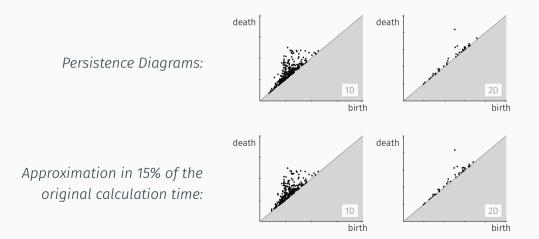

## The Complete Algorithm



# Adaptive Approximations




## Adaptive Approximations



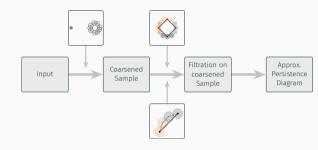

"The approximation quality for each feature depends only on the points on which certain representative cycles of the persistent homology class are defined."

#### What We Can Prove



### Experimental Results [OPT+17]

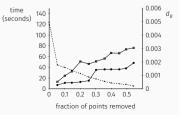



# Adaptive Approximation of Persistent Homology

# m.herick@uni-muenster.de

Maria Herick

Included in the full version:


- Proofs (a lot of them)
- Empirical evaluation [OPT<sup>+</sup>17, Sta]



#### Future work:

• Finding interesting functions to use other than the *lfs* 





- Nina Amenta, Sunghee Choi, and Ravi Krishna Kolluri.
  The power crust, unions of balls, and the medial axis transform. Comput. Geom., 19(2-3):127–153, 2001.
- 🔋 Stefan Funke and Edgar A. Ramos.

Smooth-surface reconstruction in near-linear time.

In David Eppstein, editor, Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, January 6-8, 2002, San Francisco, CA, USA, pages 781–790. ACM/SIAM, 2002.

i

Nina Otter, Mason A. Porter, Ulrike Tillmann, Peter Grindrod, and Heather A. Harrington.

A roadmap for the computation of persistent homology. *EPJ Data Sci.*, 6(1):17, 2017.

Stanford University Computer Graphics Laboratory. The stanford 3d scanning repository.